Feynman Graphs, Rooted Trees, and Ringel-hall Algebras

نویسندگان

  • KOBI KREMNIZER
  • MATT SZCZESNY
چکیده

We construct symmetric monoidal categoriesLRF ,LFG of rooted forests and Feynman graphs. These categories closely resemble finitary abelian categories, and in particular, the notion of Ringel-Hall algebra applies. The Ringel-Hall Hopf algebras of LRF ,LFG, HLRF ,HLFG are dual to the corresponding Connes-Kreimer Hopf algebras on rooted trees and Feynman diagrams. We thus obtain an interpretation of the Connes-Kreimer Lie algebras on rooted trees and Feynman graphs as Ringel-Hall Lie algebras.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

6 J un 2 00 8 FEYNMAN GRAPHS , ROOTED TREES , AND RINGEL - HALL ALGEBRAS

We construct symmetric monoidal categoriesLRF ,LFG of rooted forests and Feynman graphs. These categories closely resemble finitary abelian categories, and in particular, the notion of Ringel-Hall algebra applies. The Ringel-Hall Hopf algebras of LRF ,LFG, HLRF ,HLFG are dual to the corresponding Connes-Kreimer Hopf algebras on rooted trees and Feynman diagrams. We thus obtain an interpretation...

متن کامل

Rooted Trees, Feynman Graphs, and Hecke Correspondences

We construct natural representations of the Connes-Kreimer Lie algebras on rooted trees/Feynman graphs arising from Hecke correspondences in the categories LRF ,LFG constructed by K. Kremnizer and the author. We thus obtain the insertion/elimination representations constructed by Connes-Kreimer as well as an isomorphic pair we term top-insertion/top-elimination. We also construct graded finite-...

متن کامل

Pre-lie Algebras and Incidence Categories of Colored Rooted Trees

The incidence category CF of a family F of colored posets closed under disjoint unions and the operation of taking convex sub-posets was introduced by the author in [12], where the Ringel-Hall algebra HF of CF was also defined. We show that if the Hasse diagrams underlying F are rooted trees, then the subspace nF of primitive elements of HF carries a pre-Lie structure, defined over Z, and with ...

متن کامل

Hopf Algebras in Renormalization Theory: Locality and Dyson-schwinger Equations from Hochschild Cohomology

In this review we discuss the relevance of the Hochschild cohomology of renormalization Hopf algebras for local quantum field theories and their equations of motion. CONTENTS Introduction and acknowledgments 1 1. Rooted trees, Feynman graphs, Hochschild cohomology and local counterterms 2 1.1. Motivation 2 1.2. Basic definitions and notation 4 1.3. The Hopf algebra of rooted trees 4 1.4. Tree-l...

متن کامل

Hecke Correspondences and Feynman Graphs

We consider natural representations of the Connes-Kreimer Lie algebras on rooted trees/Feynman graphs arising from Hecke correspondences in the categories LRF ,LFG constructed by K. Kremnizer and the author. We thus obtain the insertion/elimination representations constructed by Connes-Kreimer as well as an isomorphic pair we term top-insertion/top-elimination. We also construct graded finite-d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009